Database
BASIC STRUCTURES
Extensible structures
Slot definitions
unifndxntsetndx
Metamath Proof Explorer
Description: The slot for the uniform set is not the slot for the topology in an
extensible structure. Formerly part of proof for tuslem . (Contributed by AV , 28-Oct-2024)
Ref
Expression
Assertion
unifndxntsetndx
⊢ ( UnifSet ‘ ndx ) ≠ ( TopSet ‘ ndx )
Proof
Step
Hyp
Ref
Expression
1
9re
⊢ 9 ∈ ℝ
2
1nn
⊢ 1 ∈ ℕ
3
3nn0
⊢ 3 ∈ ℕ0
4
9nn0
⊢ 9 ∈ ℕ0
5
9lt10
⊢ 9 < ; 1 0
6
2 3 4 5
declti
⊢ 9 < ; 1 3
7
1 6
gtneii
⊢ ; 1 3 ≠ 9
8
unifndx
⊢ ( UnifSet ‘ ndx ) = ; 1 3
9
tsetndx
⊢ ( TopSet ‘ ndx ) = 9
10
8 9
neeq12i
⊢ ( ( UnifSet ‘ ndx ) ≠ ( TopSet ‘ ndx ) ↔ ; 1 3 ≠ 9 )
11
7 10
mpbir
⊢ ( UnifSet ‘ ndx ) ≠ ( TopSet ‘ ndx )