Metamath Proof Explorer


Theorem unifndxntsetndx

Description: The slot for the uniform set is not the slot for the topology in an extensible structure. Formerly part of proof for tuslem . (Contributed by AV, 28-Oct-2024)

Ref Expression
Assertion unifndxntsetndx ( UnifSet ‘ ndx ) ≠ ( TopSet ‘ ndx )

Proof

Step Hyp Ref Expression
1 9re 9 ∈ ℝ
2 1nn 1 ∈ ℕ
3 3nn0 3 ∈ ℕ0
4 9nn0 9 ∈ ℕ0
5 9lt10 9 < 1 0
6 2 3 4 5 declti 9 < 1 3
7 1 6 gtneii 1 3 ≠ 9
8 unifndx ( UnifSet ‘ ndx ) = 1 3
9 tsetndx ( TopSet ‘ ndx ) = 9
10 8 9 neeq12i ( ( UnifSet ‘ ndx ) ≠ ( TopSet ‘ ndx ) ↔ 1 3 ≠ 9 )
11 7 10 mpbir ( UnifSet ‘ ndx ) ≠ ( TopSet ‘ ndx )