| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
⊢ 2 ∈ ℝ |
| 2 |
|
1nn |
⊢ 1 ∈ ℕ |
| 3 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 4 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 5 |
|
2lt10 |
⊢ 2 < ; 1 0 |
| 6 |
2 3 4 5
|
declti |
⊢ 2 < ; 1 3 |
| 7 |
1 6
|
ltneii |
⊢ 2 ≠ ; 1 3 |
| 8 |
|
plusgndx |
⊢ ( +g ‘ ndx ) = 2 |
| 9 |
|
unifndx |
⊢ ( UnifSet ‘ ndx ) = ; 1 3 |
| 10 |
8 9
|
neeq12i |
⊢ ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ↔ 2 ≠ ; 1 3 ) |
| 11 |
7 10
|
mpbir |
⊢ ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) |
| 12 |
|
3re |
⊢ 3 ∈ ℝ |
| 13 |
|
3lt10 |
⊢ 3 < ; 1 0 |
| 14 |
2 3 3 13
|
declti |
⊢ 3 < ; 1 3 |
| 15 |
12 14
|
ltneii |
⊢ 3 ≠ ; 1 3 |
| 16 |
|
mulrndx |
⊢ ( .r ‘ ndx ) = 3 |
| 17 |
16 9
|
neeq12i |
⊢ ( ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ↔ 3 ≠ ; 1 3 ) |
| 18 |
15 17
|
mpbir |
⊢ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) |
| 19 |
|
4re |
⊢ 4 ∈ ℝ |
| 20 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 21 |
|
4lt10 |
⊢ 4 < ; 1 0 |
| 22 |
2 3 20 21
|
declti |
⊢ 4 < ; 1 3 |
| 23 |
19 22
|
ltneii |
⊢ 4 ≠ ; 1 3 |
| 24 |
|
starvndx |
⊢ ( *𝑟 ‘ ndx ) = 4 |
| 25 |
24 9
|
neeq12i |
⊢ ( ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ↔ 4 ≠ ; 1 3 ) |
| 26 |
23 25
|
mpbir |
⊢ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) |
| 27 |
11 18 26
|
3pm3.2i |
⊢ ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) |
| 28 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
| 29 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 30 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 31 |
|
3nn |
⊢ 3 ∈ ℕ |
| 32 |
|
3pos |
⊢ 0 < 3 |
| 33 |
29 30 31 32
|
declt |
⊢ ; 1 0 < ; 1 3 |
| 34 |
28 33
|
ltneii |
⊢ ; 1 0 ≠ ; 1 3 |
| 35 |
|
plendx |
⊢ ( le ‘ ndx ) = ; 1 0 |
| 36 |
35 9
|
neeq12i |
⊢ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ↔ ; 1 0 ≠ ; 1 3 ) |
| 37 |
34 36
|
mpbir |
⊢ ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) |
| 38 |
|
2nn |
⊢ 2 ∈ ℕ |
| 39 |
29 38
|
decnncl |
⊢ ; 1 2 ∈ ℕ |
| 40 |
39
|
nnrei |
⊢ ; 1 2 ∈ ℝ |
| 41 |
|
2lt3 |
⊢ 2 < 3 |
| 42 |
29 4 31 41
|
declt |
⊢ ; 1 2 < ; 1 3 |
| 43 |
40 42
|
ltneii |
⊢ ; 1 2 ≠ ; 1 3 |
| 44 |
|
dsndx |
⊢ ( dist ‘ ndx ) = ; 1 2 |
| 45 |
44 9
|
neeq12i |
⊢ ( ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ↔ ; 1 2 ≠ ; 1 3 ) |
| 46 |
43 45
|
mpbir |
⊢ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) |
| 47 |
37 46
|
pm3.2i |
⊢ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) |
| 48 |
27 47
|
pm3.2i |
⊢ ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) |