Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
|
1nn |
|- 1 e. NN |
3 |
|
3nn0 |
|- 3 e. NN0 |
4 |
|
2nn0 |
|- 2 e. NN0 |
5 |
|
2lt10 |
|- 2 < ; 1 0 |
6 |
2 3 4 5
|
declti |
|- 2 < ; 1 3 |
7 |
1 6
|
ltneii |
|- 2 =/= ; 1 3 |
8 |
|
plusgndx |
|- ( +g ` ndx ) = 2 |
9 |
|
unifndx |
|- ( UnifSet ` ndx ) = ; 1 3 |
10 |
8 9
|
neeq12i |
|- ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) <-> 2 =/= ; 1 3 ) |
11 |
7 10
|
mpbir |
|- ( +g ` ndx ) =/= ( UnifSet ` ndx ) |
12 |
|
3re |
|- 3 e. RR |
13 |
|
3lt10 |
|- 3 < ; 1 0 |
14 |
2 3 3 13
|
declti |
|- 3 < ; 1 3 |
15 |
12 14
|
ltneii |
|- 3 =/= ; 1 3 |
16 |
|
mulrndx |
|- ( .r ` ndx ) = 3 |
17 |
16 9
|
neeq12i |
|- ( ( .r ` ndx ) =/= ( UnifSet ` ndx ) <-> 3 =/= ; 1 3 ) |
18 |
15 17
|
mpbir |
|- ( .r ` ndx ) =/= ( UnifSet ` ndx ) |
19 |
|
4re |
|- 4 e. RR |
20 |
|
4nn0 |
|- 4 e. NN0 |
21 |
|
4lt10 |
|- 4 < ; 1 0 |
22 |
2 3 20 21
|
declti |
|- 4 < ; 1 3 |
23 |
19 22
|
ltneii |
|- 4 =/= ; 1 3 |
24 |
|
starvndx |
|- ( *r ` ndx ) = 4 |
25 |
24 9
|
neeq12i |
|- ( ( *r ` ndx ) =/= ( UnifSet ` ndx ) <-> 4 =/= ; 1 3 ) |
26 |
23 25
|
mpbir |
|- ( *r ` ndx ) =/= ( UnifSet ` ndx ) |
27 |
11 18 26
|
3pm3.2i |
|- ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) |
28 |
|
10re |
|- ; 1 0 e. RR |
29 |
|
1nn0 |
|- 1 e. NN0 |
30 |
|
0nn0 |
|- 0 e. NN0 |
31 |
|
3nn |
|- 3 e. NN |
32 |
|
3pos |
|- 0 < 3 |
33 |
29 30 31 32
|
declt |
|- ; 1 0 < ; 1 3 |
34 |
28 33
|
ltneii |
|- ; 1 0 =/= ; 1 3 |
35 |
|
plendx |
|- ( le ` ndx ) = ; 1 0 |
36 |
35 9
|
neeq12i |
|- ( ( le ` ndx ) =/= ( UnifSet ` ndx ) <-> ; 1 0 =/= ; 1 3 ) |
37 |
34 36
|
mpbir |
|- ( le ` ndx ) =/= ( UnifSet ` ndx ) |
38 |
|
2nn |
|- 2 e. NN |
39 |
29 38
|
decnncl |
|- ; 1 2 e. NN |
40 |
39
|
nnrei |
|- ; 1 2 e. RR |
41 |
|
2lt3 |
|- 2 < 3 |
42 |
29 4 31 41
|
declt |
|- ; 1 2 < ; 1 3 |
43 |
40 42
|
ltneii |
|- ; 1 2 =/= ; 1 3 |
44 |
|
dsndx |
|- ( dist ` ndx ) = ; 1 2 |
45 |
44 9
|
neeq12i |
|- ( ( dist ` ndx ) =/= ( UnifSet ` ndx ) <-> ; 1 2 =/= ; 1 3 ) |
46 |
43 45
|
mpbir |
|- ( dist ` ndx ) =/= ( UnifSet ` ndx ) |
47 |
37 46
|
pm3.2i |
|- ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) |
48 |
27 47
|
pm3.2i |
|- ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) |