Metamath Proof Explorer


Theorem slotsdifunifndx

Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT . (Contributed by AV, 10-Nov-2024)

Ref Expression
Assertion slotsdifunifndx +ndxUnifSetndxndxUnifSetndx*ndxUnifSetndxndxUnifSetndxdistndxUnifSetndx

Proof

Step Hyp Ref Expression
1 2re 2
2 1nn 1
3 3nn0 30
4 2nn0 20
5 2lt10 2<10
6 2 3 4 5 declti 2<13
7 1 6 ltneii 213
8 plusgndx +ndx=2
9 unifndx UnifSetndx=13
10 8 9 neeq12i +ndxUnifSetndx213
11 7 10 mpbir +ndxUnifSetndx
12 3re 3
13 3lt10 3<10
14 2 3 3 13 declti 3<13
15 12 14 ltneii 313
16 mulrndx ndx=3
17 16 9 neeq12i ndxUnifSetndx313
18 15 17 mpbir ndxUnifSetndx
19 4re 4
20 4nn0 40
21 4lt10 4<10
22 2 3 20 21 declti 4<13
23 19 22 ltneii 413
24 starvndx *ndx=4
25 24 9 neeq12i *ndxUnifSetndx413
26 23 25 mpbir *ndxUnifSetndx
27 11 18 26 3pm3.2i +ndxUnifSetndxndxUnifSetndx*ndxUnifSetndx
28 10re 10
29 1nn0 10
30 0nn0 00
31 3nn 3
32 3pos 0<3
33 29 30 31 32 declt 10<13
34 28 33 ltneii 1013
35 plendx ndx=10
36 35 9 neeq12i ndxUnifSetndx1013
37 34 36 mpbir ndxUnifSetndx
38 2nn 2
39 29 38 decnncl 12
40 39 nnrei 12
41 2lt3 2<3
42 29 4 31 41 declt 12<13
43 40 42 ltneii 1213
44 dsndx distndx=12
45 44 9 neeq12i distndxUnifSetndx1213
46 43 45 mpbir distndxUnifSetndx
47 37 46 pm3.2i ndxUnifSetndxdistndxUnifSetndx
48 27 47 pm3.2i +ndxUnifSetndxndxUnifSetndx*ndxUnifSetndxndxUnifSetndxdistndxUnifSetndx