Metamath Proof Explorer


Theorem slotsdifunifndx

Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfun . (Contributed by AV, 10-Nov-2024)

Ref Expression
Assertion slotsdifunifndx + ndx UnifSet ndx ndx UnifSet ndx * ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx

Proof

Step Hyp Ref Expression
1 2re 2
2 1nn 1
3 3nn0 3 0
4 2nn0 2 0
5 2lt10 2 < 10
6 2 3 4 5 declti 2 < 13
7 1 6 ltneii 2 13
8 plusgndx + ndx = 2
9 unifndx UnifSet ndx = 13
10 8 9 neeq12i + ndx UnifSet ndx 2 13
11 7 10 mpbir + ndx UnifSet ndx
12 3re 3
13 3lt10 3 < 10
14 2 3 3 13 declti 3 < 13
15 12 14 ltneii 3 13
16 mulrndx ndx = 3
17 16 9 neeq12i ndx UnifSet ndx 3 13
18 15 17 mpbir ndx UnifSet ndx
19 4re 4
20 4nn0 4 0
21 4lt10 4 < 10
22 2 3 20 21 declti 4 < 13
23 19 22 ltneii 4 13
24 starvndx * ndx = 4
25 24 9 neeq12i * ndx UnifSet ndx 4 13
26 23 25 mpbir * ndx UnifSet ndx
27 11 18 26 3pm3.2i + ndx UnifSet ndx ndx UnifSet ndx * ndx UnifSet ndx
28 10re 10
29 1nn0 1 0
30 0nn0 0 0
31 3nn 3
32 3pos 0 < 3
33 29 30 31 32 declt 10 < 13
34 28 33 ltneii 10 13
35 plendx ndx = 10
36 35 9 neeq12i ndx UnifSet ndx 10 13
37 34 36 mpbir ndx UnifSet ndx
38 2nn 2
39 29 38 decnncl 12
40 39 nnrei 12
41 2lt3 2 < 3
42 29 4 31 41 declt 12 < 13
43 40 42 ltneii 12 13
44 dsndx dist ndx = 12
45 44 9 neeq12i dist ndx UnifSet ndx 12 13
46 43 45 mpbir dist ndx UnifSet ndx
47 37 46 pm3.2i ndx UnifSet ndx dist ndx UnifSet ndx
48 27 47 pm3.2i + ndx UnifSet ndx ndx UnifSet ndx * ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx