Metamath Proof Explorer


Theorem restid

Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypothesis restid.1 𝑋 = 𝐽
Assertion restid ( 𝐽𝑉 → ( 𝐽t 𝑋 ) = 𝐽 )

Proof

Step Hyp Ref Expression
1 restid.1 𝑋 = 𝐽
2 uniexg ( 𝐽𝑉 𝐽 ∈ V )
3 1 2 eqeltrid ( 𝐽𝑉𝑋 ∈ V )
4 1 eqimss2i 𝐽𝑋
5 sspwuni ( 𝐽 ⊆ 𝒫 𝑋 𝐽𝑋 )
6 4 5 mpbir 𝐽 ⊆ 𝒫 𝑋
7 restid2 ( ( 𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋 ) → ( 𝐽t 𝑋 ) = 𝐽 )
8 3 6 7 sylancl ( 𝐽𝑉 → ( 𝐽t 𝑋 ) = 𝐽 )