Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
restid
Metamath Proof Explorer
Description: The subspace topology of the base set is the original topology.
(Contributed by Jeff Hankins , 9-Jul-2009) (Revised by Mario Carneiro , 13-Aug-2015)
Ref
Expression
Hypothesis
restid.1
⊢ 𝑋 = ∪ 𝐽
Assertion
restid
⊢ ( 𝐽 ∈ 𝑉 → ( 𝐽 ↾t 𝑋 ) = 𝐽 )
Proof
Step
Hyp
Ref
Expression
1
restid.1
⊢ 𝑋 = ∪ 𝐽
2
uniexg
⊢ ( 𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V )
3
1 2
eqeltrid
⊢ ( 𝐽 ∈ 𝑉 → 𝑋 ∈ V )
4
1
eqimss2i
⊢ ∪ 𝐽 ⊆ 𝑋
5
sspwuni
⊢ ( 𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋 )
6
4 5
mpbir
⊢ 𝐽 ⊆ 𝒫 𝑋
7
restid2
⊢ ( ( 𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋 ) → ( 𝐽 ↾t 𝑋 ) = 𝐽 )
8
3 6 7
sylancl
⊢ ( 𝐽 ∈ 𝑉 → ( 𝐽 ↾t 𝑋 ) = 𝐽 )