Metamath Proof Explorer


Theorem tuslem

Description: Lemma for tusbas , tusunif , and tustopn . (Contributed by Thierry Arnoux, 5-Dec-2017) (Proof shortened by AV, 28-Oct-2024)

Ref Expression
Hypothesis tuslem.k K = toUnifSp U
Assertion tuslem U UnifOn X X = Base K U = UnifSet K unifTop U = TopOpen K

Proof

Step Hyp Ref Expression
1 tuslem.k K = toUnifSp U
2 baseid Base = Slot Base ndx
3 tsetndxnbasendx TopSet ndx Base ndx
4 3 necomi Base ndx TopSet ndx
5 2 4 setsnid Base Base ndx dom U UnifSet ndx U = Base Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
6 ustbas2 U UnifOn X X = dom U
7 uniexg U UnifOn X U V
8 dmexg U V dom U V
9 eqid Base ndx dom U UnifSet ndx U = Base ndx dom U UnifSet ndx U
10 basendxltunifndx Base ndx < UnifSet ndx
11 unifndxnn UnifSet ndx
12 9 10 11 2strbas1 dom U V dom U = Base Base ndx dom U UnifSet ndx U
13 7 8 12 3syl U UnifOn X dom U = Base Base ndx dom U UnifSet ndx U
14 6 13 eqtrd U UnifOn X X = Base Base ndx dom U UnifSet ndx U
15 tusval U UnifOn X toUnifSp U = Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
16 1 15 eqtrid U UnifOn X K = Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
17 16 fveq2d U UnifOn X Base K = Base Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
18 5 14 17 3eqtr4a U UnifOn X X = Base K
19 unifid UnifSet = Slot UnifSet ndx
20 unifndxntsetndx UnifSet ndx TopSet ndx
21 19 20 setsnid UnifSet Base ndx dom U UnifSet ndx U = UnifSet Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
22 9 10 11 19 2strop1 U UnifOn X U = UnifSet Base ndx dom U UnifSet ndx U
23 16 fveq2d U UnifOn X UnifSet K = UnifSet Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
24 21 22 23 3eqtr4a U UnifOn X U = UnifSet K
25 prex Base ndx dom U UnifSet ndx U V
26 fvex unifTop U V
27 tsetid TopSet = Slot TopSet ndx
28 27 setsid Base ndx dom U UnifSet ndx U V unifTop U V unifTop U = TopSet Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
29 25 26 28 mp2an unifTop U = TopSet Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
30 16 fveq2d U UnifOn X TopSet K = TopSet Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
31 29 30 eqtr4id U UnifOn X unifTop U = TopSet K
32 utopbas U UnifOn X X = unifTop U
33 31 unieqd U UnifOn X unifTop U = TopSet K
34 32 18 33 3eqtr3rd U UnifOn X TopSet K = Base K
35 34 oveq2d U UnifOn X TopSet K 𝑡 TopSet K = TopSet K 𝑡 Base K
36 fvex TopSet K V
37 eqid TopSet K = TopSet K
38 37 restid TopSet K V TopSet K 𝑡 TopSet K = TopSet K
39 36 38 ax-mp TopSet K 𝑡 TopSet K = TopSet K
40 eqid Base K = Base K
41 eqid TopSet K = TopSet K
42 40 41 topnval TopSet K 𝑡 Base K = TopOpen K
43 35 39 42 3eqtr3g U UnifOn X TopSet K = TopOpen K
44 31 43 eqtrd U UnifOn X unifTop U = TopOpen K
45 18 24 44 3jca U UnifOn X X = Base K U = UnifSet K unifTop U = TopOpen K