Metamath Proof Explorer


Theorem tusunif

Description: The uniform structure of a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)

Ref Expression
Hypothesis tuslem.k K=toUnifSpU
Assertion tusunif UUnifOnXU=UnifSetK

Proof

Step Hyp Ref Expression
1 tuslem.k K=toUnifSpU
2 1 tuslem UUnifOnXX=BaseKU=UnifSetKunifTopU=TopOpenK
3 2 simp2d UUnifOnXU=UnifSetK