Metamath Proof Explorer


Definition df-tus

Description: Define the function mapping a uniform structure to a uniform space. (Contributed by Thierry Arnoux, 17-Nov-2017)

Ref Expression
Assertion df-tus toUnifSp=uranUnifOnBasendxdomuUnifSetndxusSetTopSetndxunifTopu

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctus classtoUnifSp
1 vu setvaru
2 cust classUnifOn
3 2 crn classranUnifOn
4 3 cuni classranUnifOn
5 cbs classBase
6 cnx classndx
7 6 5 cfv classBasendx
8 1 cv setvaru
9 8 cuni classu
10 9 cdm classdomu
11 7 10 cop classBasendxdomu
12 cunif classUnifSet
13 6 12 cfv classUnifSetndx
14 13 8 cop classUnifSetndxu
15 11 14 cpr classBasendxdomuUnifSetndxu
16 csts classsSet
17 cts classTopSet
18 6 17 cfv classTopSetndx
19 cutop classunifTop
20 8 19 cfv classunifTopu
21 18 20 cop classTopSetndxunifTopu
22 15 21 16 co classBasendxdomuUnifSetndxusSetTopSetndxunifTopu
23 1 4 22 cmpt classuranUnifOnBasendxdomuUnifSetndxusSetTopSetndxunifTopu
24 0 23 wceq wfftoUnifSp=uranUnifOnBasendxdomuUnifSetndxusSetTopSetndxunifTopu