Metamath Proof Explorer


Theorem tususs

Description: The uniform structure of a constructed uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017)

Ref Expression
Hypothesis tuslem.k K=toUnifSpU
Assertion tususs UUnifOnXU=UnifStK

Proof

Step Hyp Ref Expression
1 tuslem.k K=toUnifSpU
2 1 tusunif UUnifOnXU=UnifSetK
3 ustuni UUnifOnXU=X×X
4 2 unieqd UUnifOnXU=UnifSetK
5 1 tusbas UUnifOnXX=BaseK
6 5 sqxpeqd UUnifOnXX×X=BaseK×BaseK
7 3 4 6 3eqtr3rd UUnifOnXBaseK×BaseK=UnifSetK
8 eqid BaseK=BaseK
9 eqid UnifSetK=UnifSetK
10 8 9 ussid BaseK×BaseK=UnifSetKUnifSetK=UnifStK
11 7 10 syl UUnifOnXUnifSetK=UnifStK
12 2 11 eqtrd UUnifOnXU=UnifStK