Metamath Proof Explorer


Theorem tustopn

Description: The topology induced by a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)

Ref Expression
Hypotheses tuslem.k K=toUnifSpU
tustopn.j J=unifTopU
Assertion tustopn UUnifOnXJ=TopOpenK

Proof

Step Hyp Ref Expression
1 tuslem.k K=toUnifSpU
2 tustopn.j J=unifTopU
3 1 tuslem UUnifOnXX=BaseKU=UnifSetKunifTopU=TopOpenK
4 3 simp3d UUnifOnXunifTopU=TopOpenK
5 2 4 eqtrid UUnifOnXJ=TopOpenK