Step |
Hyp |
Ref |
Expression |
1 |
|
tuslem.k |
⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) |
2 |
1
|
tusunif |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSet ‘ 𝐾 ) ) |
3 |
|
ustuni |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ 𝑈 = ( 𝑋 × 𝑋 ) ) |
4 |
2
|
unieqd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ 𝑈 = ∪ ( UnifSet ‘ 𝐾 ) ) |
5 |
1
|
tusbas |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
6 |
5
|
sqxpeqd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
7 |
3 4 6
|
3eqtr3rd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) = ∪ ( UnifSet ‘ 𝐾 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
|
eqid |
⊢ ( UnifSet ‘ 𝐾 ) = ( UnifSet ‘ 𝐾 ) |
10 |
8 9
|
ussid |
⊢ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) = ∪ ( UnifSet ‘ 𝐾 ) → ( UnifSet ‘ 𝐾 ) = ( UnifSt ‘ 𝐾 ) ) |
11 |
7 10
|
syl |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( UnifSet ‘ 𝐾 ) = ( UnifSt ‘ 𝐾 ) ) |
12 |
2 11
|
eqtrd |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSt ‘ 𝐾 ) ) |