Metamath Proof Explorer


Theorem tususs

Description: The uniform structure of a constructed uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017)

Ref Expression
Hypothesis tuslem.k 𝐾 = ( toUnifSp ‘ 𝑈 )
Assertion tususs ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSt ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 tuslem.k 𝐾 = ( toUnifSp ‘ 𝑈 )
2 1 tusunif ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSet ‘ 𝐾 ) )
3 ustuni ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( 𝑋 × 𝑋 ) )
4 2 unieqd ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSet ‘ 𝐾 ) )
5 1 tusbas ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) )
6 5 sqxpeqd ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) )
7 3 4 6 3eqtr3rd ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) = ( UnifSet ‘ 𝐾 ) )
8 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
9 eqid ( UnifSet ‘ 𝐾 ) = ( UnifSet ‘ 𝐾 )
10 8 9 ussid ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) = ( UnifSet ‘ 𝐾 ) → ( UnifSet ‘ 𝐾 ) = ( UnifSt ‘ 𝐾 ) )
11 7 10 syl ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( UnifSet ‘ 𝐾 ) = ( UnifSt ‘ 𝐾 ) )
12 2 11 eqtrd ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSt ‘ 𝐾 ) )