Metamath Proof Explorer


Theorem utopbas

Description: The base of the topology induced by a uniform structure U . (Contributed by Thierry Arnoux, 5-Dec-2017)

Ref Expression
Assertion utopbas U UnifOn X X = unifTop U

Proof

Step Hyp Ref Expression
1 utopval U UnifOn X unifTop U = a 𝒫 X | x a v U v x a
2 ssrab2 a 𝒫 X | x a v U v x a 𝒫 X
3 1 2 eqsstrdi U UnifOn X unifTop U 𝒫 X
4 ssidd U UnifOn X X X
5 ustssxp U UnifOn X v U v X × X
6 imassrn v x ran v
7 rnss v X × X ran v ran X × X
8 rnxpid ran X × X = X
9 7 8 sseqtrdi v X × X ran v X
10 6 9 sstrid v X × X v x X
11 5 10 syl U UnifOn X v U v x X
12 11 ralrimiva U UnifOn X v U v x X
13 ustne0 U UnifOn X U
14 r19.2zb U v U v x X v U v x X
15 13 14 sylib U UnifOn X v U v x X v U v x X
16 12 15 mpd U UnifOn X v U v x X
17 16 ralrimivw U UnifOn X x X v U v x X
18 elutop U UnifOn X X unifTop U X X x X v U v x X
19 4 17 18 mpbir2and U UnifOn X X unifTop U
20 elpwuni X unifTop U unifTop U 𝒫 X unifTop U = X
21 19 20 syl U UnifOn X unifTop U 𝒫 X unifTop U = X
22 3 21 mpbid U UnifOn X unifTop U = X
23 22 eqcomd U UnifOn X X = unifTop U