Metamath Proof Explorer


Theorem tusval

Description: The value of the uniform space mapping function. (Contributed by Thierry Arnoux, 5-Dec-2017)

Ref Expression
Assertion tusval U UnifOn X toUnifSp U = Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U

Proof

Step Hyp Ref Expression
1 df-tus toUnifSp = u ran UnifOn Base ndx dom u UnifSet ndx u sSet TopSet ndx unifTop u
2 simpr U UnifOn X u = U u = U
3 2 unieqd U UnifOn X u = U u = U
4 3 dmeqd U UnifOn X u = U dom u = dom U
5 4 opeq2d U UnifOn X u = U Base ndx dom u = Base ndx dom U
6 2 opeq2d U UnifOn X u = U UnifSet ndx u = UnifSet ndx U
7 5 6 preq12d U UnifOn X u = U Base ndx dom u UnifSet ndx u = Base ndx dom U UnifSet ndx U
8 2 fveq2d U UnifOn X u = U unifTop u = unifTop U
9 8 opeq2d U UnifOn X u = U TopSet ndx unifTop u = TopSet ndx unifTop U
10 7 9 oveq12d U UnifOn X u = U Base ndx dom u UnifSet ndx u sSet TopSet ndx unifTop u = Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U
11 elrnust U UnifOn X U ran UnifOn
12 ovexd U UnifOn X Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U V
13 1 10 11 12 fvmptd2 U UnifOn X toUnifSp U = Base ndx dom U UnifSet ndx U sSet TopSet ndx unifTop U