Metamath Proof Explorer
Table of Contents - 12.4. Metric spaces
- Pseudometric spaces
- ispsmet
- psmetdmdm
- psmetf
- psmetcl
- psmet0
- psmettri2
- psmetsym
- psmettri
- psmetge0
- psmetxrge0
- psmetres2
- psmetlecl
- distspace
- Basic metric space properties
- cxms
- cms
- ctms
- df-xms
- df-ms
- df-tms
- ismet
- isxmet
- ismeti
- isxmetd
- isxmet2d
- metflem
- xmetf
- metf
- xmetcl
- metcl
- ismet2
- metxmet
- xmetdmdm
- metdmdm
- xmetunirn
- xmeteq0
- meteq0
- xmettri2
- mettri2
- xmet0
- met0
- xmetge0
- metge0
- xmetlecl
- xmetsym
- xmetpsmet
- xmettpos
- metsym
- xmettri
- mettri
- xmettri3
- mettri3
- xmetrtri
- xmetrtri2
- metrtri
- xmetgt0
- metgt0
- metn0
- xmetres2
- metreslem
- metres2
- xmetres
- metres
- 0met
- prdsdsf
- prdsxmetlem
- prdsxmet
- prdsmet
- ressprdsds
- resspwsds
- imasdsf1olem
- imasdsf1o
- imasf1oxmet
- imasf1omet
- xpsdsfn
- xpsdsfn2
- xpsxmetlem
- xpsxmet
- xpsdsval
- xpsmet
- Metric space balls
- blfvalps
- blfval
- blvalps
- blval
- elblps
- elbl
- elbl2ps
- elbl2
- elbl3ps
- elbl3
- blcomps
- blcom
- xblpnfps
- xblpnf
- blpnf
- bldisj
- blgt0
- bl2in
- xblss2ps
- xblss2
- blss2ps
- blss2
- blhalf
- blfps
- blf
- blrnps
- blrn
- xblcntrps
- xblcntr
- blcntrps
- blcntr
- xbln0
- bln0
- blelrnps
- blelrn
- blssm
- unirnblps
- unirnbl
- blin
- ssblps
- ssbl
- blssps
- blss
- blssexps
- blssex
- ssblex
- blin2
- blbas
- blres
- xmeterval
- xmeter
- xmetec
- blssec
- blpnfctr
- xmetresbl
- Open sets of a metric space
- mopnval
- mopntopon
- mopntop
- mopnuni
- elmopn
- mopnfss
- mopnm
- elmopn2
- mopnss
- isxms
- isxms2
- isms
- isms2
- xmstopn
- mstopn
- xmstps
- msxms
- mstps
- xmsxmet
- msmet
- msf
- xmsxmet2
- msmet2
- mscl
- xmscl
- xmsge0
- xmseq0
- xmssym
- xmstri2
- mstri2
- xmstri
- mstri
- xmstri3
- mstri3
- msrtri
- xmspropd
- mspropd
- setsmsbas
- setsmsds
- setsmstset
- setsmstopn
- setsxms
- setsms
- tmsval
- tmslem
- tmsbas
- tmsds
- tmstopn
- tmsxms
- tmsms
- imasf1obl
- imasf1oxms
- imasf1oms
- prdsbl
- mopni
- mopni2
- mopni3
- blssopn
- unimopn
- mopnin
- mopn0
- rnblopn
- blopn
- neibl
- blnei
- lpbl
- blsscls2
- blcld
- blcls
- blsscls
- metss
- metequiv
- metequiv2
- metss2lem
- metss2
- comet
- stdbdmetval
- stdbdxmet
- stdbdmet
- stdbdbl
- stdbdmopn
- mopnex
- methaus
- met1stc
- met2ndci
- met2ndc
- metrest
- ressxms
- ressms
- prdsmslem1
- prdsxmslem1
- prdsxmslem2
- prdsxms
- prdsms
- pwsxms
- pwsms
- xpsxms
- xpsms
- tmsxps
- tmsxpsmopn
- tmsxpsval
- tmsxpsval2
- Continuity in metric spaces
- metcnp3
- metcnp
- metcnp2
- metcn
- metcnpi
- metcnpi2
- metcnpi3
- txmetcnp
- txmetcn
- The uniform structure generated by a metric
- metuval
- metustel
- metustss
- metustrel
- metustto
- metustid
- metustsym
- metustexhalf
- metustfbas
- metust
- cfilucfil
- metuust
- cfilucfil2
- blval2
- elbl4
- metuel
- metuel2
- metustbl
- psmetutop
- xmetutop
- xmsusp
- restmetu
- metucn
- Examples of metric spaces
- dscmet
- dscopn
- nrmmetd
- abvmet
- Normed algebraic structures
- cnm
- cngp
- ctng
- cnrg
- cnlm
- cnvc
- df-nm
- df-ngp
- df-tng
- df-nrg
- df-nlm
- df-nvc
- nmfval
- nmval
- nmfval0
- nmfval2
- nmval2
- nmf2
- nmpropd
- nmpropd2
- isngp
- isngp2
- isngp3
- ngpgrp
- ngpms
- ngpxms
- ngptps
- ngpmet
- ngpds
- ngpdsr
- ngpds2
- ngpds2r
- ngpds3
- ngpds3r
- ngprcan
- ngplcan
- isngp4
- ngpinvds
- ngpsubcan
- nmf
- nmcl
- nmge0
- nmeq0
- nmne0
- nmrpcl
- nminv
- nmmtri
- nmsub
- nmrtri
- nm2dif
- nmtri
- nmtri2
- ngpi
- nm0
- nmgt0
- sgrim
- sgrimval
- subgnm
- subgnm2
- subgngp
- ngptgp
- ngppropd
- reldmtng
- tngval
- tnglem
- tngbas
- tngplusg
- tng0
- tngmulr
- tngsca
- tngvsca
- tngip
- tngds
- tngtset
- tngtopn
- tngnm
- tngngp2
- tngngpd
- tngngp
- tnggrpr
- tngngp3
- nrmtngdist
- nrmtngnrm
- tngngpim
- isnrg
- nrgabv
- nrgngp
- nrgring
- nmmul
- nrgdsdi
- nrgdsdir
- nm1
- unitnmn0
- nminvr
- nmdvr
- nrgdomn
- nrgtgp
- subrgnrg
- tngnrg
- isnlm
- nmvs
- nlmngp
- nlmlmod
- nlmnrg
- nlmngp2
- nlmdsdi
- nlmdsdir
- nlmmul0or
- sranlm
- nlmvscnlem2
- nlmvscnlem1
- nlmvscn
- rlmnlm
- rlmnm
- nrgtrg
- nrginvrcnlem
- nrginvrcn
- nrgtdrg
- nlmtlm
- isnvc
- nvcnlm
- nvclvec
- nvclmod
- isnvc2
- nvctvc
- lssnlm
- lssnvc
- rlmnvc
- ngpocelbl
- Normed space homomorphisms (bounded linear operators)
- cnmo
- cnghm
- cnmhm
- df-nmo
- df-nghm
- df-nmhm
- nmoffn
- reldmnghm
- reldmnmhm
- nmofval
- nmoval
- nmogelb
- nmolb
- nmolb2d
- nmof
- nmocl
- nmoge0
- nghmfval
- isnghm
- isnghm2
- isnghm3
- bddnghm
- nghmcl
- nmoi
- nmoix
- nmoi2
- nmoleub
- nghmrcl1
- nghmrcl2
- nghmghm
- nmo0
- nmoeq0
- nmoco
- nghmco
- nmotri
- nghmplusg
- 0nghm
- nmoid
- idnghm
- nmods
- nghmcn
- isnmhm
- nmhmrcl1
- nmhmrcl2
- nmhmlmhm
- nmhmnghm
- nmhmghm
- isnmhm2
- nmhmcl
- idnmhm
- 0nmhm
- nmhmco
- nmhmplusg
- Topology on the reals
- qtopbaslem
- qtopbas
- retopbas
- retop
- uniretop
- retopon
- retps
- iooretop
- icccld
- icopnfcld
- iocmnfcld
- qdensere
- cnmetdval
- cnmet
- cnxmet
- cnbl0
- cnblcld
- cnfldms
- cnfldxms
- cnfldtps
- cnfldnm
- cnngp
- cnnrg
- cnfldtopn
- cnfldtopon
- cnfldtop
- cnfldhaus
- unicntop
- cnopn
- zringnrg
- remetdval
- remet
- rexmet
- bl2ioo
- ioo2bl
- ioo2blex
- blssioo
- tgioo
- qdensere2
- blcvx
- rehaus
- tgqioo
- re2ndc
- resubmet
- tgioo2
- rerest
- tgioo3
- xrtgioo
- xrrest
- xrrest2
- xrsxmet
- xrsdsre
- xrsblre
- xrsmopn
- zcld
- recld2
- zcld2
- zdis
- sszcld
- reperflem
- reperf
- cnperf
- iccntr
- icccmplem1
- icccmplem2
- icccmplem3
- icccmp
- reconnlem1
- reconnlem2
- reconn
- retopconn
- iccconn
- opnreen
- rectbntr0
- xrge0gsumle
- xrge0tsms
- xrge0tsms2
- metdcnlem
- xmetdcn2
- xmetdcn
- metdcn2
- metdcn
- msdcn
- cnmpt1ds
- cnmpt2ds
- nmcn
- ngnmcncn
- abscn
- metdsval
- metdsf
- metdsge
- metds0
- metdstri
- metdsle
- metdsre
- metdseq0
- metdscnlem
- metdscn
- metdscn2
- metnrmlem1a
- metnrmlem1
- metnrmlem2
- metnrmlem3
- metnrm
- metreg
- addcnlem
- addcn
- subcn
- mulcn
- divcn
- cnfldtgp
- fsumcn
- fsum2cn
- expcn
- divccn
- sqcn
- Topological definitions using the reals
- cii
- ccncf
- df-ii
- df-cncf
- iitopon
- iitop
- iiuni
- dfii2
- dfii3
- dfii4
- dfii5
- iicmp
- iiconn
- cncfval
- elcncf
- elcncf2
- cncfrss
- cncfrss2
- cncff
- cncfi
- elcncf1di
- elcncf1ii
- rescncf
- cncffvrn
- cncfss
- climcncf
- abscncf
- recncf
- imcncf
- cjcncf
- mulc1cncf
- divccncf
- cncfco
- cncfcompt2
- cncfmet
- cncfcn
- cncfcn1
- cncfmptc
- cncfmptid
- cncfmpt1f
- cncfmpt2f
- cncfmpt2ss
- addccncf
- idcncf
- sub1cncf
- sub2cncf
- cdivcncf
- negcncf
- negfcncf
- abscncfALT
- cncfcnvcn
- expcncf
- cnmptre
- cnmpopc
- iirev
- iirevcn
- iihalf1
- iihalf1cn
- iihalf2
- iihalf2cn
- elii1
- elii2
- iimulcl
- iimulcn
- icoopnst
- iocopnst
- icchmeo
- icopnfcnv
- icopnfhmeo
- iccpnfcnv
- iccpnfhmeo
- xrhmeo
- xrhmph
- xrcmp
- xrconn
- icccvx
- oprpiece1res1
- oprpiece1res2
- cnrehmeo
- cnheiborlem
- cnheibor
- cnllycmp
- rellycmp
- bndth
- evth
- evth2
- lebnumlem1
- lebnumlem2
- lebnumlem3
- lebnum
- xlebnum
- lebnumii
- Path homotopy
- chtpy
- cphtpy
- cphtpc
- df-htpy
- df-phtpy
- ishtpy
- htpycn
- htpyi
- ishtpyd
- htpycom
- htpyid
- htpyco1
- htpyco2
- htpycc
- isphtpy
- phtpyhtpy
- phtpycn
- phtpyi
- phtpy01
- isphtpyd
- isphtpy2d
- phtpycom
- phtpyid
- phtpyco2
- phtpycc
- df-phtpc
- phtpcrel
- isphtpc
- phtpcer
- phtpc01
- reparphti
- reparpht
- phtpcco2
- The fundamental group
- cpco
- comi
- comn
- cpi1
- cpin
- df-pco
- df-om1
- df-omn
- df-pi1
- df-pin
- pcofval
- pcoval
- pcovalg
- pcoval1
- pco0
- pco1
- pcoval2
- pcocn
- copco
- pcohtpylem
- pcohtpy
- pcoptcl
- pcopt
- pcopt2
- pcoass
- pcorevcl
- pcorevlem
- pcorev
- pcorev2
- pcophtb
- om1val
- om1bas
- om1elbas
- om1addcl
- om1plusg
- om1tset
- om1opn
- pi1val
- pi1bas
- pi1blem
- pi1buni
- pi1bas2
- pi1eluni
- pi1bas3
- pi1cpbl
- elpi1
- elpi1i
- pi1addf
- pi1addval
- pi1grplem
- pi1grp
- pi1id
- pi1inv
- pi1xfrf
- pi1xfrval
- pi1xfr
- pi1xfrcnvlem
- pi1xfrcnv
- pi1xfrgim
- pi1cof
- pi1coval
- pi1coghm