Description: The compact generator is idempotent on compactly generated spaces. (Contributed by Mario Carneiro, 20-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | kgenidm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kgenf | |
|
2 | ffn | |
|
3 | fvelrnb | |
|
4 | 1 2 3 | mp2b | |
5 | toptopon2 | |
|
6 | kgentopon | |
|
7 | 5 6 | sylbi | |
8 | kgentopon | |
|
9 | 7 8 | syl | |
10 | toponss | |
|
11 | 9 10 | sylan | |
12 | simplr | |
|
13 | kgencmp2 | |
|
14 | 13 | biimpa | |
15 | 14 | ad2ant2rl | |
16 | kgeni | |
|
17 | 12 15 16 | syl2anc | |
18 | kgencmp | |
|
19 | 18 | ad2ant2rl | |
20 | 17 19 | eleqtrrd | |
21 | 20 | expr | |
22 | 21 | ralrimiva | |
23 | simpl | |
|
24 | 23 5 | sylib | |
25 | elkgen | |
|
26 | 24 25 | syl | |
27 | 11 22 26 | mpbir2and | |
28 | 27 | ex | |
29 | 28 | ssrdv | |
30 | fveq2 | |
|
31 | id | |
|
32 | 30 31 | sseq12d | |
33 | 29 32 | syl5ibcom | |
34 | 33 | rexlimiv | |
35 | 4 34 | sylbi | |
36 | kgentop | |
|
37 | kgenss | |
|
38 | 36 37 | syl | |
39 | 35 38 | eqssd | |