Metamath Proof Explorer


Theorem elkgen

Description: Value of the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion elkgen JTopOnXA𝑘GenJAXk𝒫XJ𝑡kCompAkJ𝑡k

Proof

Step Hyp Ref Expression
1 kgenval JTopOnX𝑘GenJ=x𝒫X|k𝒫XJ𝑡kCompxkJ𝑡k
2 1 eleq2d JTopOnXA𝑘GenJAx𝒫X|k𝒫XJ𝑡kCompxkJ𝑡k
3 ineq1 x=Axk=Ak
4 3 eleq1d x=AxkJ𝑡kAkJ𝑡k
5 4 imbi2d x=AJ𝑡kCompxkJ𝑡kJ𝑡kCompAkJ𝑡k
6 5 ralbidv x=Ak𝒫XJ𝑡kCompxkJ𝑡kk𝒫XJ𝑡kCompAkJ𝑡k
7 6 elrab Ax𝒫X|k𝒫XJ𝑡kCompxkJ𝑡kA𝒫Xk𝒫XJ𝑡kCompAkJ𝑡k
8 toponmax JTopOnXXJ
9 elpw2g XJA𝒫XAX
10 8 9 syl JTopOnXA𝒫XAX
11 10 anbi1d JTopOnXA𝒫Xk𝒫XJ𝑡kCompAkJ𝑡kAXk𝒫XJ𝑡kCompAkJ𝑡k
12 7 11 bitrid JTopOnXAx𝒫X|k𝒫XJ𝑡kCompxkJ𝑡kAXk𝒫XJ𝑡kCompAkJ𝑡k
13 2 12 bitrd JTopOnXA𝑘GenJAXk𝒫XJ𝑡kCompAkJ𝑡k