Metamath Proof Explorer


Definition df-cmp

Description: Definition of a compact topology. A topology is compact iff any open covering of its underlying set contains a finite subcovering (Heine-Borel property). Definition C''' of BourbakiTop1 p. I.59. Note: Bourbaki uses the term "quasi-compact" (saving "compact" for "compact Hausdorff"), but it is not the modern usage (which we follow). (Contributed by FL, 22-Dec-2008)

Ref Expression
Assertion df-cmp Comp=xTop|y𝒫xx=yz𝒫yFinx=z

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccmp classComp
1 vx setvarx
2 ctop classTop
3 vy setvary
4 1 cv setvarx
5 4 cpw class𝒫x
6 4 cuni classx
7 3 cv setvary
8 7 cuni classy
9 6 8 wceq wffx=y
10 vz setvarz
11 7 cpw class𝒫y
12 cfn classFin
13 11 12 cin class𝒫yFin
14 10 cv setvarz
15 14 cuni classz
16 6 15 wceq wffx=z
17 16 10 13 wrex wffz𝒫yFinx=z
18 9 17 wi wffx=yz𝒫yFinx=z
19 18 3 5 wral wffy𝒫xx=yz𝒫yFinx=z
20 19 1 2 crab classxTop|y𝒫xx=yz𝒫yFinx=z
21 0 20 wceq wffComp=xTop|y𝒫xx=yz𝒫yFinx=z