Metamath Proof Explorer


Theorem kgentop

Description: A compactly generated space is a topology. (Note: henceforth we will use the idiom " J e. ran kGen " to denote " J is compactly generated", since as we will show a space is compactly generated iff it is in the range of the compact generator.) (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgentop ⊒J∈ranβ‘π‘˜Genβ†’J∈Top

Proof

Step Hyp Ref Expression
1 kgenf βŠ’π‘˜Gen:Top⟢Top
2 frn βŠ’π‘˜Gen:Top⟢Topβ†’ranβ‘π‘˜GenβŠ†Top
3 1 2 ax-mp ⊒ranβ‘π‘˜GenβŠ†Top
4 3 sseli ⊒J∈ranβ‘π‘˜Genβ†’J∈Top