Metamath Proof Explorer


Definition df-kgen

Description: Define the "compact generator", the functor from topological spaces to compactly generated spaces. Also known as the k-ification operation. A set is k-open, i.e. x e. ( kGenj ) , iff the preimage of x is open in all compact Hausdorff spaces. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion df-kgen βŠ’π‘˜Gen=j∈Top⟼xβˆˆπ’«β‹ƒj|βˆ€kβˆˆπ’«β‹ƒjj↾𝑑k∈Compβ†’x∩k∈j↾𝑑k

Detailed syntax breakdown

Step Hyp Ref Expression
0 ckgen classπ‘˜Gen
1 vj setvarj
2 ctop classTop
3 vx setvarx
4 1 cv setvarj
5 4 cuni class⋃j
6 5 cpw class𝒫⋃j
7 vk setvark
8 crest class↾𝑑
9 7 cv setvark
10 4 9 8 co classj↾𝑑k
11 ccmp classComp
12 10 11 wcel wffj↾𝑑k∈Comp
13 3 cv setvarx
14 13 9 cin classx∩k
15 14 10 wcel wffx∩k∈j↾𝑑k
16 12 15 wi wffj↾𝑑k∈Compβ†’x∩k∈j↾𝑑k
17 16 7 6 wral wffβˆ€kβˆˆπ’«β‹ƒjj↾𝑑k∈Compβ†’x∩k∈j↾𝑑k
18 17 3 6 crab classxβˆˆπ’«β‹ƒj|βˆ€kβˆˆπ’«β‹ƒjj↾𝑑k∈Compβ†’x∩k∈j↾𝑑k
19 1 2 18 cmpt classj∈Top⟼xβˆˆπ’«β‹ƒj|βˆ€kβˆˆπ’«β‹ƒjj↾𝑑k∈Compβ†’x∩k∈j↾𝑑k
20 0 19 wceq wffπ‘˜Gen=j∈Top⟼xβˆˆπ’«β‹ƒj|βˆ€kβˆˆπ’«β‹ƒjj↾𝑑k∈Compβ†’x∩k∈j↾𝑑k