Metamath Proof Explorer


Definition df-kgen

Description: Define the "compact generator", the functor from topological spaces to compactly generated spaces. Also known as the k-ification operation. A set is k-open, i.e. x e. ( kGenj ) , iff the preimage of x is open in all compact Hausdorff spaces. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion df-kgen 𝑘Gen = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 𝑗 ( ( 𝑗t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝑗t 𝑘 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ckgen 𝑘Gen
1 vj 𝑗
2 ctop Top
3 vx 𝑥
4 1 cv 𝑗
5 4 cuni 𝑗
6 5 cpw 𝒫 𝑗
7 vk 𝑘
8 crest t
9 7 cv 𝑘
10 4 9 8 co ( 𝑗t 𝑘 )
11 ccmp Comp
12 10 11 wcel ( 𝑗t 𝑘 ) ∈ Comp
13 3 cv 𝑥
14 13 9 cin ( 𝑥𝑘 )
15 14 10 wcel ( 𝑥𝑘 ) ∈ ( 𝑗t 𝑘 )
16 12 15 wi ( ( 𝑗t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝑗t 𝑘 ) )
17 16 7 6 wral 𝑘 ∈ 𝒫 𝑗 ( ( 𝑗t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝑗t 𝑘 ) )
18 17 3 6 crab { 𝑥 ∈ 𝒫 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 𝑗 ( ( 𝑗t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝑗t 𝑘 ) ) }
19 1 2 18 cmpt ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 𝑗 ( ( 𝑗t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝑗t 𝑘 ) ) } )
20 0 19 wceq 𝑘Gen = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 𝑗 ( ( 𝑗t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝑗t 𝑘 ) ) } )