Metamath Proof Explorer


Theorem kgenval

Description: Value of the compact generator. (The "k" in kGen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgenval ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑘Gen ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝐽t 𝑘 ) ) } )

Proof

Step Hyp Ref Expression
1 df-kgen 𝑘Gen = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 𝑗 ( ( 𝑗t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝑗t 𝑘 ) ) } )
2 unieq ( 𝑗 = 𝐽 𝑗 = 𝐽 )
3 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝐽 )
4 3 eqcomd ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 = 𝑋 )
5 2 4 sylan9eqr ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → 𝑗 = 𝑋 )
6 5 pweqd ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → 𝒫 𝑗 = 𝒫 𝑋 )
7 oveq1 ( 𝑗 = 𝐽 → ( 𝑗t 𝑘 ) = ( 𝐽t 𝑘 ) )
8 7 eleq1d ( 𝑗 = 𝐽 → ( ( 𝑗t 𝑘 ) ∈ Comp ↔ ( 𝐽t 𝑘 ) ∈ Comp ) )
9 7 eleq2d ( 𝑗 = 𝐽 → ( ( 𝑥𝑘 ) ∈ ( 𝑗t 𝑘 ) ↔ ( 𝑥𝑘 ) ∈ ( 𝐽t 𝑘 ) ) )
10 8 9 imbi12d ( 𝑗 = 𝐽 → ( ( ( 𝑗t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝑗t 𝑘 ) ) ↔ ( ( 𝐽t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝐽t 𝑘 ) ) ) )
11 10 adantl ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ( ( 𝑗t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝑗t 𝑘 ) ) ↔ ( ( 𝐽t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝐽t 𝑘 ) ) ) )
12 6 11 raleqbidv ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ∀ 𝑘 ∈ 𝒫 𝑗 ( ( 𝑗t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝑗t 𝑘 ) ) ↔ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝐽t 𝑘 ) ) ) )
13 6 12 rabeqbidv ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → { 𝑥 ∈ 𝒫 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 𝑗 ( ( 𝑗t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝑗t 𝑘 ) ) } = { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝐽t 𝑘 ) ) } )
14 topontop ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top )
15 toponmax ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋𝐽 )
16 pwexg ( 𝑋𝐽 → 𝒫 𝑋 ∈ V )
17 rabexg ( 𝒫 𝑋 ∈ V → { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝐽t 𝑘 ) ) } ∈ V )
18 15 16 17 3syl ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝐽t 𝑘 ) ) } ∈ V )
19 1 13 14 18 fvmptd2 ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑘Gen ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽t 𝑘 ) ∈ Comp → ( 𝑥𝑘 ) ∈ ( 𝐽t 𝑘 ) ) } )