Metamath Proof Explorer


Theorem pweqd

Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013)

Ref Expression
Hypothesis pweqd.1 ( 𝜑𝐴 = 𝐵 )
Assertion pweqd ( 𝜑 → 𝒫 𝐴 = 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 pweqd.1 ( 𝜑𝐴 = 𝐵 )
2 pweq ( 𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵 )
3 1 2 syl ( 𝜑 → 𝒫 𝐴 = 𝒫 𝐵 )