Metamath Proof Explorer


Theorem topontop

Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion topontop ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 istopon ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ↔ ( 𝐽 ∈ Top ∧ 𝐵 = 𝐽 ) )
2 1 simplbi ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top )