Metamath Proof Explorer


Theorem kgenftop

Description: The compact generator generates a topology. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgenftop ⊒J∈Topβ†’π‘˜Gen⁑J∈Top

Proof

Step Hyp Ref Expression
1 toptopon2 ⊒J∈Top↔J∈TopOn⁑⋃J
2 kgentopon ⊒J∈TopOn⁑⋃Jβ†’π‘˜Gen⁑J∈TopOn⁑⋃J
3 1 2 sylbi ⊒J∈Topβ†’π‘˜Gen⁑J∈TopOn⁑⋃J
4 topontop βŠ’π‘˜Gen⁑J∈TopOn⁑⋃Jβ†’π‘˜Gen⁑J∈Top
5 3 4 syl ⊒J∈Topβ†’π‘˜Gen⁑J∈Top