Metamath Proof Explorer


Theorem llycmpkgen2

Description: A locally compact space is compactly generated. (This variant of llycmpkgen uses the weaker definition of locally compact, "every point has a compact neighborhood", instead of "every point has a local base of compact neighborhoods".) (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypotheses iskgen3.1 X = J
llycmpkgen2.2 φ J Top
llycmpkgen2.3 φ x X k nei J x J 𝑡 k Comp
Assertion llycmpkgen2 φ J ran 𝑘Gen

Proof

Step Hyp Ref Expression
1 iskgen3.1 X = J
2 llycmpkgen2.2 φ J Top
3 llycmpkgen2.3 φ x X k nei J x J 𝑡 k Comp
4 elssuni u 𝑘Gen J u 𝑘Gen J
5 4 adantl φ u 𝑘Gen J u 𝑘Gen J
6 1 kgenuni J Top X = 𝑘Gen J
7 2 6 syl φ X = 𝑘Gen J
8 7 adantr φ u 𝑘Gen J X = 𝑘Gen J
9 5 8 sseqtrrd φ u 𝑘Gen J u X
10 9 sselda φ u 𝑘Gen J x u x X
11 3 adantlr φ u 𝑘Gen J x X k nei J x J 𝑡 k Comp
12 10 11 syldan φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp
13 2 ad3antrrr φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp J Top
14 difss X k u X
15 1 ntropn J Top X k u X int J X k u J
16 13 14 15 sylancl φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J X k u J
17 simprl φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp k nei J x
18 1 neii1 J Top k nei J x k X
19 13 17 18 syl2anc φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp k X
20 1 ntropn J Top k X int J k J
21 13 19 20 syl2anc φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J k J
22 inopn J Top int J X k u J int J k J int J X k u int J k J
23 13 16 21 22 syl3anc φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J X k u int J k J
24 simplr φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp x u
25 1 ntrss2 J Top k X int J k k
26 13 19 25 syl2anc φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J k k
27 10 adantr φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp x X
28 27 snssd φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp x X
29 1 neiint J Top x X k X k nei J x x int J k
30 13 28 19 29 syl3anc φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp k nei J x x int J k
31 17 30 mpbid φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp x int J k
32 vex x V
33 32 snss x int J k x int J k
34 31 33 sylibr φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp x int J k
35 26 34 sseldd φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp x k
36 24 35 elind φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp x u k
37 simpllr φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp u 𝑘Gen J
38 simprr φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp J 𝑡 k Comp
39 kgeni u 𝑘Gen J J 𝑡 k Comp u k J 𝑡 k
40 37 38 39 syl2anc φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp u k J 𝑡 k
41 vex k V
42 resttop J Top k V J 𝑡 k Top
43 13 41 42 sylancl φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp J 𝑡 k Top
44 inss2 u k k
45 1 restuni J Top k X k = J 𝑡 k
46 13 19 45 syl2anc φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp k = J 𝑡 k
47 44 46 sseqtrid φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp u k J 𝑡 k
48 eqid J 𝑡 k = J 𝑡 k
49 48 isopn3 J 𝑡 k Top u k J 𝑡 k u k J 𝑡 k int J 𝑡 k u k = u k
50 43 47 49 syl2anc φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp u k J 𝑡 k int J 𝑡 k u k = u k
51 40 50 mpbid φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J 𝑡 k u k = u k
52 44 a1i φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp u k k
53 eqid J 𝑡 k = J 𝑡 k
54 1 53 restntr J Top k X u k k int J 𝑡 k u k = int J u k X k k
55 13 19 52 54 syl3anc φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J 𝑡 k u k = int J u k X k k
56 51 55 eqtr3d φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp u k = int J u k X k k
57 36 56 eleqtrd φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp x int J u k X k k
58 57 elin1d φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp x int J u k X k
59 undif3 u k X k = u k X k u k
60 incom u k = k u
61 60 difeq2i k u k = k k u
62 difin k k u = k u
63 61 62 eqtri k u k = k u
64 63 difeq2i u k X k u k = u k X k u
65 59 64 eqtri u k X k = u k X k u
66 44 19 sstrid φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp u k X
67 ssequn1 u k X u k X = X
68 66 67 sylib φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp u k X = X
69 68 difeq1d φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp u k X k u = X k u
70 65 69 eqtrid φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp u k X k = X k u
71 70 fveq2d φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J u k X k = int J X k u
72 58 71 eleqtrd φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp x int J X k u
73 72 34 elind φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp x int J X k u int J k
74 sslin int J k k int J X k u int J k int J X k u k
75 26 74 syl φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J X k u int J k int J X k u k
76 1 ntrss2 J Top X k u X int J X k u X k u
77 13 14 76 sylancl φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J X k u X k u
78 77 difss2d φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J X k u X
79 reldisj int J X k u X int J X k u k u = int J X k u X k u
80 78 79 syl φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J X k u k u = int J X k u X k u
81 77 80 mpbird φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J X k u k u =
82 inssdif0 int J X k u k u int J X k u k u =
83 81 82 sylibr φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J X k u k u
84 75 83 sstrd φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp int J X k u int J k u
85 eleq2 z = int J X k u int J k x z x int J X k u int J k
86 sseq1 z = int J X k u int J k z u int J X k u int J k u
87 85 86 anbi12d z = int J X k u int J k x z z u x int J X k u int J k int J X k u int J k u
88 87 rspcev int J X k u int J k J x int J X k u int J k int J X k u int J k u z J x z z u
89 23 73 84 88 syl12anc φ u 𝑘Gen J x u k nei J x J 𝑡 k Comp z J x z z u
90 12 89 rexlimddv φ u 𝑘Gen J x u z J x z z u
91 90 ralrimiva φ u 𝑘Gen J x u z J x z z u
92 91 ex φ u 𝑘Gen J x u z J x z z u
93 eltop2 J Top u J x u z J x z z u
94 2 93 syl φ u J x u z J x z z u
95 92 94 sylibrd φ u 𝑘Gen J u J
96 95 ssrdv φ 𝑘Gen J J
97 iskgen2 J ran 𝑘Gen J Top 𝑘Gen J J
98 2 96 97 sylanbrc φ J ran 𝑘Gen