Metamath Proof Explorer


Theorem difin

Description: Difference with intersection. Theorem 33 of Suppes p. 29. (Contributed by NM, 31-Mar-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion difin AAB=AB

Proof

Step Hyp Ref Expression
1 pm4.61 ¬xAxBxA¬xB
2 anclb xAxBxAxAxB
3 elin xABxAxB
4 3 imbi2i xAxABxAxAxB
5 iman xAxAB¬xA¬xAB
6 2 4 5 3bitr2i xAxB¬xA¬xAB
7 6 con2bii xA¬xAB¬xAxB
8 eldif xABxA¬xB
9 1 7 8 3bitr4i xA¬xABxAB
10 9 difeqri AAB=AB