Metamath Proof Explorer


Theorem difin

Description: Difference with intersection. Theorem 33 of Suppes p. 29. (Contributed by NM, 31-Mar-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion difin
|- ( A \ ( A i^i B ) ) = ( A \ B )

Proof

Step Hyp Ref Expression
1 pm4.61
 |-  ( -. ( x e. A -> x e. B ) <-> ( x e. A /\ -. x e. B ) )
2 anclb
 |-  ( ( x e. A -> x e. B ) <-> ( x e. A -> ( x e. A /\ x e. B ) ) )
3 elin
 |-  ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) )
4 3 imbi2i
 |-  ( ( x e. A -> x e. ( A i^i B ) ) <-> ( x e. A -> ( x e. A /\ x e. B ) ) )
5 iman
 |-  ( ( x e. A -> x e. ( A i^i B ) ) <-> -. ( x e. A /\ -. x e. ( A i^i B ) ) )
6 2 4 5 3bitr2i
 |-  ( ( x e. A -> x e. B ) <-> -. ( x e. A /\ -. x e. ( A i^i B ) ) )
7 6 con2bii
 |-  ( ( x e. A /\ -. x e. ( A i^i B ) ) <-> -. ( x e. A -> x e. B ) )
8 eldif
 |-  ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) )
9 1 7 8 3bitr4i
 |-  ( ( x e. A /\ -. x e. ( A i^i B ) ) <-> x e. ( A \ B ) )
10 9 difeqri
 |-  ( A \ ( A i^i B ) ) = ( A \ B )