Metamath Proof Explorer


Theorem kgenuni

Description: The base set of the compact generator is the same as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Hypothesis kgenuni.1 X=J
Assertion kgenuni JTopX=𝑘GenJ

Proof

Step Hyp Ref Expression
1 kgenuni.1 X=J
2 1 toptopon JTopJTopOnX
3 kgentopon JTopOnX𝑘GenJTopOnX
4 2 3 sylbi JTop𝑘GenJTopOnX
5 toponuni 𝑘GenJTopOnXX=𝑘GenJ
6 4 5 syl JTopX=𝑘GenJ