Metamath Proof Explorer


Theorem restuni

Description: The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypothesis restuni.1 X=J
Assertion restuni JTopAXA=J𝑡A

Proof

Step Hyp Ref Expression
1 restuni.1 X=J
2 1 toptopon JTopJTopOnX
3 resttopon JTopOnXAXJ𝑡ATopOnA
4 2 3 sylanb JTopAXJ𝑡ATopOnA
5 toponuni J𝑡ATopOnAA=J𝑡A
6 4 5 syl JTopAXA=J𝑡A