Metamath Proof Explorer


Theorem restuni

Description: The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypothesis restuni.1 𝑋 = 𝐽
Assertion restuni ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → 𝐴 = ( 𝐽t 𝐴 ) )

Proof

Step Hyp Ref Expression
1 restuni.1 𝑋 = 𝐽
2 1 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 resttopon ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝑋 ) → ( 𝐽t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) )
4 2 3 sylanb ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → ( 𝐽t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) )
5 toponuni ( ( 𝐽t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) → 𝐴 = ( 𝐽t 𝐴 ) )
6 4 5 syl ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → 𝐴 = ( 𝐽t 𝐴 ) )