Step |
Hyp |
Ref |
Expression |
1 |
|
restuni.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
4 |
2 3
|
sylanb |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
5 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( TopSet ‘ ndx ) , ( 𝐽 ↾t 𝐴 ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( TopSet ‘ ndx ) , ( 𝐽 ↾t 𝐴 ) 〉 } |
6 |
5
|
eltpsg |
⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) → { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( TopSet ‘ ndx ) , ( 𝐽 ↾t 𝐴 ) 〉 } ∈ TopSp ) |
7 |
4 6
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( TopSet ‘ ndx ) , ( 𝐽 ↾t 𝐴 ) 〉 } ∈ TopSp ) |