Metamath Proof Explorer


Theorem stoig

Description: The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009) (Proof shortened by Mario Carneiro, 1-May-2015)

Ref Expression
Hypothesis restuni.1 𝑋 = 𝐽
Assertion stoig ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → { ⟨ ( Base ‘ ndx ) , 𝐴 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( 𝐽t 𝐴 ) ⟩ } ∈ TopSp )

Proof

Step Hyp Ref Expression
1 restuni.1 𝑋 = 𝐽
2 1 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 resttopon ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝑋 ) → ( 𝐽t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) )
4 2 3 sylanb ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → ( 𝐽t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) )
5 eqid { ⟨ ( Base ‘ ndx ) , 𝐴 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( 𝐽t 𝐴 ) ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝐴 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( 𝐽t 𝐴 ) ⟩ }
6 5 eltpsg ( ( 𝐽t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) → { ⟨ ( Base ‘ ndx ) , 𝐴 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( 𝐽t 𝐴 ) ⟩ } ∈ TopSp )
7 4 6 syl ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → { ⟨ ( Base ‘ ndx ) , 𝐴 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( 𝐽t 𝐴 ) ⟩ } ∈ TopSp )