| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eltpsi.k |
⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } |
| 2 |
|
basendxlttsetndx |
⊢ ( Base ‘ ndx ) < ( TopSet ‘ ndx ) |
| 3 |
|
tsetndxnn |
⊢ ( TopSet ‘ ndx ) ∈ ℕ |
| 4 |
|
tsetid |
⊢ TopSet = Slot ( TopSet ‘ ndx ) |
| 5 |
1 2 3 4
|
2strop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐽 = ( TopSet ‘ 𝐾 ) ) |
| 6 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐴 ∈ 𝐽 ) |
| 7 |
1 2 3
|
2strbas |
⊢ ( 𝐴 ∈ 𝐽 → 𝐴 = ( Base ‘ 𝐾 ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐴 = ( Base ‘ 𝐾 ) ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → ( TopOn ‘ 𝐴 ) = ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 10 |
5 9
|
eleq12d |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) ↔ ( TopSet ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 11 |
10
|
ibi |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → ( TopSet ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 13 |
|
eqid |
⊢ ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐾 ) |
| 14 |
12 13
|
tsettps |
⊢ ( ( TopSet ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) → 𝐾 ∈ TopSp ) |
| 15 |
11 14
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐾 ∈ TopSp ) |