Metamath Proof Explorer


Theorem eltpsg

Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypothesis eltpsi.k K = Base ndx A TopSet ndx J
Assertion eltpsg J TopOn A K TopSp

Proof

Step Hyp Ref Expression
1 eltpsi.k K = Base ndx A TopSet ndx J
2 basendxlttsetndx Base ndx < TopSet ndx
3 tsetndxnn TopSet ndx
4 tsetid TopSet = Slot TopSet ndx
5 1 2 3 4 2strop1 J TopOn A J = TopSet K
6 toponmax J TopOn A A J
7 1 2 3 2strbas1 A J A = Base K
8 6 7 syl J TopOn A A = Base K
9 8 fveq2d J TopOn A TopOn A = TopOn Base K
10 5 9 eleq12d J TopOn A J TopOn A TopSet K TopOn Base K
11 10 ibi J TopOn A TopSet K TopOn Base K
12 eqid Base K = Base K
13 eqid TopSet K = TopSet K
14 12 13 tsettps TopSet K TopOn Base K K TopSp
15 11 14 syl J TopOn A K TopSp