Description: Alternative definition of Top in terms of TopOn . (Contributed by Mario Carneiro, 13-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 | |
Assertion | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 | |
2 | istopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽 ) ) | |
3 | 1 2 | mpbiran2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐽 ∈ Top ) |
4 | 3 | bicomi | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |