Metamath Proof Explorer


Theorem toptopon

Description: Alternative definition of Top in terms of TopOn . (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypothesis toptopon.1 𝑋 = 𝐽
Assertion toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 toptopon.1 𝑋 = 𝐽
2 istopon ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = 𝐽 ) )
3 1 2 mpbiran2 ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐽 ∈ Top )
4 3 bicomi ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) )