Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | resttopon | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop | |
|
2 | id | |
|
3 | toponmax | |
|
4 | ssexg | |
|
5 | 2 3 4 | syl2anr | |
6 | resttop | |
|
7 | 1 5 6 | syl2an2r | |
8 | simpr | |
|
9 | sseqin2 | |
|
10 | 8 9 | sylib | |
11 | simpl | |
|
12 | 3 | adantr | |
13 | elrestr | |
|
14 | 11 5 12 13 | syl3anc | |
15 | 10 14 | eqeltrrd | |
16 | elssuni | |
|
17 | 15 16 | syl | |
18 | restval | |
|
19 | 5 18 | syldan | |
20 | inss2 | |
|
21 | vex | |
|
22 | 21 | inex1 | |
23 | 22 | elpw | |
24 | 20 23 | mpbir | |
25 | 24 | a1i | |
26 | 25 | fmpttd | |
27 | 26 | frnd | |
28 | 19 27 | eqsstrd | |
29 | sspwuni | |
|
30 | 28 29 | sylib | |
31 | 17 30 | eqssd | |
32 | istopon | |
|
33 | 7 31 32 | sylanbrc | |