Metamath Proof Explorer


Theorem resttopon

Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion resttopon JTopOnXAXJ𝑡ATopOnA

Proof

Step Hyp Ref Expression
1 topontop JTopOnXJTop
2 id AXAX
3 toponmax JTopOnXXJ
4 ssexg AXXJAV
5 2 3 4 syl2anr JTopOnXAXAV
6 resttop JTopAVJ𝑡ATop
7 1 5 6 syl2an2r JTopOnXAXJ𝑡ATop
8 simpr JTopOnXAXAX
9 sseqin2 AXXA=A
10 8 9 sylib JTopOnXAXXA=A
11 simpl JTopOnXAXJTopOnX
12 3 adantr JTopOnXAXXJ
13 elrestr JTopOnXAVXJXAJ𝑡A
14 11 5 12 13 syl3anc JTopOnXAXXAJ𝑡A
15 10 14 eqeltrrd JTopOnXAXAJ𝑡A
16 elssuni AJ𝑡AAJ𝑡A
17 15 16 syl JTopOnXAXAJ𝑡A
18 restval JTopOnXAVJ𝑡A=ranxJxA
19 5 18 syldan JTopOnXAXJ𝑡A=ranxJxA
20 inss2 xAA
21 vex xV
22 21 inex1 xAV
23 22 elpw xA𝒫AxAA
24 20 23 mpbir xA𝒫A
25 24 a1i JTopOnXAXxJxA𝒫A
26 25 fmpttd JTopOnXAXxJxA:J𝒫A
27 26 frnd JTopOnXAXranxJxA𝒫A
28 19 27 eqsstrd JTopOnXAXJ𝑡A𝒫A
29 sspwuni J𝑡A𝒫AJ𝑡AA
30 28 29 sylib JTopOnXAXJ𝑡AA
31 17 30 eqssd JTopOnXAXA=J𝑡A
32 istopon J𝑡ATopOnAJ𝑡ATopA=J𝑡A
33 7 31 32 sylanbrc JTopOnXAXJ𝑡ATopOnA