Metamath Proof Explorer


Theorem elrestr

Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Assertion elrestr JVSWAJASJ𝑡S

Proof

Step Hyp Ref Expression
1 eqid AS=AS
2 ineq1 x=AxS=AS
3 2 rspceeqv AJAS=ASxJAS=xS
4 1 3 mpan2 AJxJAS=xS
5 elrest JVSWASJ𝑡SxJAS=xS
6 4 5 imbitrrid JVSWAJASJ𝑡S
7 6 3impia JVSWAJASJ𝑡S