Metamath Proof Explorer


Theorem ntrss2

Description: A subset includes its interior. (Contributed by NM, 3-Oct-2007) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis clscld.1 X=J
Assertion ntrss2 JTopSXintJSS

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 1 ntrval JTopSXintJS=J𝒫S
3 inss2 J𝒫S𝒫S
4 3 unissi J𝒫S𝒫S
5 unipw 𝒫S=S
6 4 5 sseqtri J𝒫SS
7 2 6 eqsstrdi JTopSXintJSS