Metamath Proof Explorer


Theorem unipw

Description: A class equals the union of its power class. Exercise 6(a) of Enderton p. 38. (Contributed by NM, 14-Oct-1996) (Proof shortened by Alan Sare, 28-Dec-2008)

Ref Expression
Assertion unipw 𝒫A=A

Proof

Step Hyp Ref Expression
1 eluni x𝒫Ayxyy𝒫A
2 elelpwi xyy𝒫AxA
3 2 exlimiv yxyy𝒫AxA
4 1 3 sylbi x𝒫AxA
5 vsnid xx
6 snelpwi xAx𝒫A
7 elunii xxx𝒫Ax𝒫A
8 5 6 7 sylancr xAx𝒫A
9 4 8 impbii x𝒫AxA
10 9 eqriv 𝒫A=A