Metamath Proof Explorer


Theorem elunii

Description: Membership in class union. (Contributed by NM, 24-Mar-1995)

Ref Expression
Assertion elunii ABBCAC

Proof

Step Hyp Ref Expression
1 eleq2 x=BAxAB
2 eleq1 x=BxCBC
3 1 2 anbi12d x=BAxxCABBC
4 3 spcegv BCABBCxAxxC
5 4 anabsi7 ABBCxAxxC
6 eluni ACxAxxC
7 5 6 sylibr ABBCAC