Metamath Proof Explorer


Theorem llycmpkgen

Description: A locally compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion llycmpkgen JN-Locally Comp Jran𝑘Gen

Proof

Step Hyp Ref Expression
1 eqid J=J
2 nllytop JN-Locally Comp JTop
3 simpl JN-Locally Comp xJ JN-Locally Comp
4 1 topopn JTopJJ
5 2 4 syl JN-Locally Comp JJ
6 5 adantr JN-Locally Comp xJ JJ
7 simpr JN-Locally Comp xJ xJ
8 nllyi JN-Locally Comp JJ xJ kneiJxkJJ𝑡kComp
9 3 6 7 8 syl3anc JN-Locally Comp xJ kneiJxkJJ𝑡kComp
10 simpr kJJ𝑡kCompJ𝑡kComp
11 10 reximi kneiJxkJJ𝑡kCompkneiJxJ𝑡kComp
12 9 11 syl JN-Locally Comp xJ kneiJxJ𝑡kComp
13 1 2 12 llycmpkgen2 JN-Locally Comp Jran𝑘Gen