Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
β’ βͺ π½ = βͺ π½ |
2 |
|
nllytop |
β’ ( π½ β π-Locally Comp β π½ β Top ) |
3 |
|
simpl |
β’ ( ( π½ β π-Locally Comp β§ π₯ β βͺ π½ ) β π½ β π-Locally Comp ) |
4 |
1
|
topopn |
β’ ( π½ β Top β βͺ π½ β π½ ) |
5 |
2 4
|
syl |
β’ ( π½ β π-Locally Comp β βͺ π½ β π½ ) |
6 |
5
|
adantr |
β’ ( ( π½ β π-Locally Comp β§ π₯ β βͺ π½ ) β βͺ π½ β π½ ) |
7 |
|
simpr |
β’ ( ( π½ β π-Locally Comp β§ π₯ β βͺ π½ ) β π₯ β βͺ π½ ) |
8 |
|
nllyi |
β’ ( ( π½ β π-Locally Comp β§ βͺ π½ β π½ β§ π₯ β βͺ π½ ) β β π β ( ( nei β π½ ) β { π₯ } ) ( π β βͺ π½ β§ ( π½ βΎt π ) β Comp ) ) |
9 |
3 6 7 8
|
syl3anc |
β’ ( ( π½ β π-Locally Comp β§ π₯ β βͺ π½ ) β β π β ( ( nei β π½ ) β { π₯ } ) ( π β βͺ π½ β§ ( π½ βΎt π ) β Comp ) ) |
10 |
|
simpr |
β’ ( ( π β βͺ π½ β§ ( π½ βΎt π ) β Comp ) β ( π½ βΎt π ) β Comp ) |
11 |
10
|
reximi |
β’ ( β π β ( ( nei β π½ ) β { π₯ } ) ( π β βͺ π½ β§ ( π½ βΎt π ) β Comp ) β β π β ( ( nei β π½ ) β { π₯ } ) ( π½ βΎt π ) β Comp ) |
12 |
9 11
|
syl |
β’ ( ( π½ β π-Locally Comp β§ π₯ β βͺ π½ ) β β π β ( ( nei β π½ ) β { π₯ } ) ( π½ βΎt π ) β Comp ) |
13 |
1 2 12
|
llycmpkgen2 |
β’ ( π½ β π-Locally Comp β π½ β ran πGen ) |