Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reximi.1 | ⊢ ( 𝜑 → 𝜓 ) | |
Assertion | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi.1 | ⊢ ( 𝜑 → 𝜓 ) | |
2 | 1 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
3 | 2 | reximia | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) |