Metamath Proof Explorer


Theorem reximi

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996)

Ref Expression
Hypothesis reximi.1 ( 𝜑𝜓 )
Assertion reximi ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 reximi.1 ( 𝜑𝜓 )
2 1 a1i ( 𝑥𝐴 → ( 𝜑𝜓 ) )
3 2 reximia ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 )