Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
reximi
Next ⟩
rexbii2
Metamath Proof Explorer
Ascii
Unicode
Theorem
reximi
Description:
Inference quantifying both antecedent and consequent.
(Contributed by
NM
, 18-Oct-1996)
Ref
Expression
Hypothesis
reximi.1
⊢
φ
→
ψ
Assertion
reximi
⊢
∃
x
∈
A
φ
→
∃
x
∈
A
ψ
Proof
Step
Hyp
Ref
Expression
1
reximi.1
⊢
φ
→
ψ
2
1
a1i
⊢
x
∈
A
→
φ
→
ψ
3
2
reximia
⊢
∃
x
∈
A
φ
→
∃
x
∈
A
ψ