Metamath Proof Explorer


Theorem reximi

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996)

Ref Expression
Hypothesis reximi.1 φ ψ
Assertion reximi x A φ x A ψ

Proof

Step Hyp Ref Expression
1 reximi.1 φ ψ
2 1 a1i x A φ ψ
3 2 reximia x A φ x A ψ