Metamath Proof Explorer


Theorem reximi

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996)

Ref Expression
Hypothesis ralimi.1 φψ
Assertion reximi xAφxAψ

Proof

Step Hyp Ref Expression
1 ralimi.1 φψ
2 1 a1i xAφψ
3 2 reximia xAφxAψ