Metamath Proof Explorer


Theorem reximia

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997) (Proof shortened by Wolf Lammen, 31-Oct-2024)

Ref Expression
Hypothesis ralimia.1 xAφψ
Assertion reximia xAφxAψ

Proof

Step Hyp Ref Expression
1 ralimia.1 xAφψ
2 1 imdistani xAφxAψ
3 2 reximi2 xAφxAψ