Metamath Proof Explorer


Theorem ralimiaa

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007)

Ref Expression
Hypothesis ralimiaa.1 xAφψ
Assertion ralimiaa xAφxAψ

Proof

Step Hyp Ref Expression
1 ralimiaa.1 xAφψ
2 1 ex xAφψ
3 2 ralimia xAφxAψ