Metamath Proof Explorer


Theorem reldisj

Description: Two ways of saying that two classes are disjoint, using the complement of B relative to a universe C . (Contributed by NM, 15-Feb-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion reldisj ACAB=ACB

Proof

Step Hyp Ref Expression
1 dfss2 ACxxAxC
2 eleq1w x=yxAyA
3 eleq1w x=yxCyC
4 2 3 imbi12d x=yxAxCyAyC
5 4 spw xxAxCxAxC
6 pm5.44 xAxCxA¬xBxAxC¬xB
7 eldif xCBxC¬xB
8 7 imbi2i xAxCBxAxC¬xB
9 6 8 bitr4di xAxCxA¬xBxAxCB
10 5 9 syl xxAxCxA¬xBxAxCB
11 1 10 sylbi ACxA¬xBxAxCB
12 11 albidv ACxxA¬xBxxAxCB
13 disj1 AB=xxA¬xB
14 dfss2 ACBxxAxCB
15 12 13 14 3bitr4g ACAB=ACB