Metamath Proof Explorer


Theorem inopn

Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006)

Ref Expression
Assertion inopn JTopAJBJABJ

Proof

Step Hyp Ref Expression
1 istopg JTopJTopxxJxJxJyJxyJ
2 1 ibi JTopxxJxJxJyJxyJ
3 2 simprd JTopxJyJxyJ
4 ineq1 x=Axy=Ay
5 4 eleq1d x=AxyJAyJ
6 ineq2 y=BAy=AB
7 6 eleq1d y=BAyJABJ
8 5 7 rspc2v AJBJxJyJxyJABJ
9 3 8 syl5com JTopAJBJABJ
10 9 3impib JTopAJBJABJ