Metamath Proof Explorer


Theorem ntropn

Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis clscld.1 X=J
Assertion ntropn JTopSXintJSJ

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 1 ntrval JTopSXintJS=J𝒫S
3 inss1 J𝒫SJ
4 uniopn JTopJ𝒫SJJ𝒫SJ
5 3 4 mpan2 JTopJ𝒫SJ
6 5 adantr JTopSXJ𝒫SJ
7 2 6 eqeltrd JTopSXintJSJ