Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clscld.1 | |- X = U. J |
|
Assertion | ntropn | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) e. J ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | |- X = U. J |
|
2 | 1 | ntrval | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) = U. ( J i^i ~P S ) ) |
3 | inss1 | |- ( J i^i ~P S ) C_ J |
|
4 | uniopn | |- ( ( J e. Top /\ ( J i^i ~P S ) C_ J ) -> U. ( J i^i ~P S ) e. J ) |
|
5 | 3 4 | mpan2 | |- ( J e. Top -> U. ( J i^i ~P S ) e. J ) |
6 | 5 | adantr | |- ( ( J e. Top /\ S C_ X ) -> U. ( J i^i ~P S ) e. J ) |
7 | 2 6 | eqeltrd | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) e. J ) |