Metamath Proof Explorer


Theorem ntropn

Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis clscld.1
|- X = U. J
Assertion ntropn
|- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) e. J )

Proof

Step Hyp Ref Expression
1 clscld.1
 |-  X = U. J
2 1 ntrval
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) = U. ( J i^i ~P S ) )
3 inss1
 |-  ( J i^i ~P S ) C_ J
4 uniopn
 |-  ( ( J e. Top /\ ( J i^i ~P S ) C_ J ) -> U. ( J i^i ~P S ) e. J )
5 3 4 mpan2
 |-  ( J e. Top -> U. ( J i^i ~P S ) e. J )
6 5 adantr
 |-  ( ( J e. Top /\ S C_ X ) -> U. ( J i^i ~P S ) e. J )
7 2 6 eqeltrd
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) e. J )