Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eqid |
|
3 |
1 2
|
cnf |
|
4 |
3
|
adantl |
|
5 |
|
cnvimass |
|
6 |
4
|
fdmd |
|
7 |
6
|
adantr |
|
8 |
5 7
|
sseqtrid |
|
9 |
|
cnvresima |
|
10 |
4
|
ad2antrr |
|
11 |
|
ffun |
|
12 |
|
inpreima |
|
13 |
10 11 12
|
3syl |
|
14 |
13
|
ineq1d |
|
15 |
|
in32 |
|
16 |
|
ssrin |
|
17 |
5 16
|
ax-mp |
|
18 |
|
dminss |
|
19 |
17 18
|
sstri |
|
20 |
19
|
a1i |
|
21 |
|
df-ss |
|
22 |
20 21
|
sylib |
|
23 |
15 22
|
eqtrid |
|
24 |
14 23
|
eqtrd |
|
25 |
9 24
|
eqtrid |
|
26 |
|
simpr |
|
27 |
26
|
ad2antrr |
|
28 |
|
elpwi |
|
29 |
28
|
ad2antrl |
|
30 |
1
|
cnrest |
|
31 |
27 29 30
|
syl2anc |
|
32 |
|
simpr |
|
33 |
32
|
ad3antrrr |
|
34 |
|
toptopon2 |
|
35 |
33 34
|
sylib |
|
36 |
|
df-ima |
|
37 |
36
|
eqimss2i |
|
38 |
37
|
a1i |
|
39 |
|
imassrn |
|
40 |
10
|
frnd |
|
41 |
39 40
|
sstrid |
|
42 |
|
cnrest2 |
|
43 |
35 38 41 42
|
syl3anc |
|
44 |
31 43
|
mpbid |
|
45 |
|
simplr |
|
46 |
|
simprr |
|
47 |
|
imacmp |
|
48 |
27 46 47
|
syl2anc |
|
49 |
|
kgeni |
|
50 |
45 48 49
|
syl2anc |
|
51 |
|
cnima |
|
52 |
44 50 51
|
syl2anc |
|
53 |
25 52
|
eqeltrrd |
|
54 |
53
|
expr |
|
55 |
54
|
ralrimiva |
|
56 |
|
kgentop |
|
57 |
56
|
ad3antrrr |
|
58 |
|
toptopon2 |
|
59 |
57 58
|
sylib |
|
60 |
|
elkgen |
|
61 |
59 60
|
syl |
|
62 |
8 55 61
|
mpbir2and |
|
63 |
|
kgenidm |
|
64 |
63
|
ad3antrrr |
|
65 |
62 64
|
eleqtrd |
|
66 |
65
|
ralrimiva |
|
67 |
56 58
|
sylib |
|
68 |
|
kgentopon |
|
69 |
34 68
|
sylbi |
|
70 |
|
iscn |
|
71 |
67 69 70
|
syl2an |
|
72 |
71
|
adantr |
|
73 |
4 66 72
|
mpbir2and |
|
74 |
73
|
ex |
|
75 |
74
|
ssrdv |
|
76 |
69
|
adantl |
|
77 |
|
toponcom |
|
78 |
32 76 77
|
syl2anc |
|
79 |
|
kgenss |
|
80 |
79
|
adantl |
|
81 |
|
eqid |
|
82 |
81
|
cnss2 |
|
83 |
78 80 82
|
syl2anc |
|
84 |
75 83
|
eqssd |
|