Metamath Proof Explorer


Theorem kgencn3

Description: The set of continuous functions from J to K is unaffected by k-ification of K , if J is already compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion kgencn3 ⊒J∈ranβ‘π‘˜Gen∧K∈Topβ†’JCnK=JCnπ‘˜Gen⁑K

Proof

Step Hyp Ref Expression
1 eqid βŠ’β‹ƒJ=⋃J
2 eqid βŠ’β‹ƒK=⋃K
3 1 2 cnf ⊒f∈JCnKβ†’f:⋃JβŸΆβ‹ƒK
4 3 adantl ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnKβ†’f:⋃JβŸΆβ‹ƒK
5 cnvimass ⊒f-1xβŠ†dom⁑f
6 4 fdmd ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnKβ†’dom⁑f=⋃J
7 6 adantr ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑Kβ†’dom⁑f=⋃J
8 5 7 sseqtrid ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑Kβ†’f-1xβŠ†β‹ƒJ
9 cnvresima ⊒fβ†Ύy-1x∩fy=f-1x∩fy∩y
10 4 ad2antrr ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’f:⋃JβŸΆβ‹ƒK
11 ffun ⊒f:⋃JβŸΆβ‹ƒKβ†’Fun⁑f
12 inpreima ⊒Fun⁑fβ†’f-1x∩fy=f-1x∩f-1fy
13 10 11 12 3syl ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’f-1x∩fy=f-1x∩f-1fy
14 13 ineq1d ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’f-1x∩fy∩y=f-1x∩f-1fy∩y
15 in32 ⊒f-1x∩f-1fy∩y=f-1x∩y∩f-1fy
16 ssrin ⊒f-1xβŠ†dom⁑fβ†’f-1x∩yβŠ†dom⁑f∩y
17 5 16 ax-mp ⊒f-1x∩yβŠ†dom⁑f∩y
18 dminss ⊒dom⁑f∩yβŠ†f-1fy
19 17 18 sstri ⊒f-1x∩yβŠ†f-1fy
20 19 a1i ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’f-1x∩yβŠ†f-1fy
21 df-ss ⊒f-1x∩yβŠ†f-1fy↔f-1x∩y∩f-1fy=f-1x∩y
22 20 21 sylib ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’f-1x∩y∩f-1fy=f-1x∩y
23 15 22 eqtrid ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’f-1x∩f-1fy∩y=f-1x∩y
24 14 23 eqtrd ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’f-1x∩fy∩y=f-1x∩y
25 9 24 eqtrid ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’fβ†Ύy-1x∩fy=f-1x∩y
26 simpr ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnKβ†’f∈JCnK
27 26 ad2antrr ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’f∈JCnK
28 elpwi ⊒yβˆˆπ’«β‹ƒJβ†’yβŠ†β‹ƒJ
29 28 ad2antrl ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’yβŠ†β‹ƒJ
30 1 cnrest ⊒f∈JCnK∧yβŠ†β‹ƒJβ†’fβ†Ύy∈J↾𝑑yCnK
31 27 29 30 syl2anc ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’fβ†Ύy∈J↾𝑑yCnK
32 simpr ⊒J∈ranβ‘π‘˜Gen∧K∈Topβ†’K∈Top
33 32 ad3antrrr ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’K∈Top
34 toptopon2 ⊒K∈Top↔K∈TopOn⁑⋃K
35 33 34 sylib ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’K∈TopOn⁑⋃K
36 df-ima ⊒fy=ran⁑fβ†Ύy
37 36 eqimss2i ⊒ran⁑fβ†ΎyβŠ†fy
38 37 a1i ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’ran⁑fβ†ΎyβŠ†fy
39 imassrn ⊒fyβŠ†ran⁑f
40 10 frnd ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’ran⁑fβŠ†β‹ƒK
41 39 40 sstrid ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’fyβŠ†β‹ƒK
42 cnrest2 ⊒K∈TopOn⁑⋃K∧ran⁑fβ†ΎyβŠ†fy∧fyβŠ†β‹ƒKβ†’fβ†Ύy∈J↾𝑑yCnK↔fβ†Ύy∈J↾𝑑yCnK↾𝑑fy
43 35 38 41 42 syl3anc ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’fβ†Ύy∈J↾𝑑yCnK↔fβ†Ύy∈J↾𝑑yCnK↾𝑑fy
44 31 43 mpbid ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’fβ†Ύy∈J↾𝑑yCnK↾𝑑fy
45 simplr ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’xβˆˆπ‘˜Gen⁑K
46 simprr ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’J↾𝑑y∈Comp
47 imacmp ⊒f∈JCnK∧J↾𝑑y∈Compβ†’K↾𝑑fy∈Comp
48 27 46 47 syl2anc ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’K↾𝑑fy∈Comp
49 kgeni ⊒xβˆˆπ‘˜Gen⁑K∧K↾𝑑fy∈Compβ†’x∩fy∈K↾𝑑fy
50 45 48 49 syl2anc ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’x∩fy∈K↾𝑑fy
51 cnima ⊒fβ†Ύy∈J↾𝑑yCnK↾𝑑fy∧x∩fy∈K↾𝑑fyβ†’fβ†Ύy-1x∩fy∈J↾𝑑y
52 44 50 51 syl2anc ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’fβ†Ύy-1x∩fy∈J↾𝑑y
53 25 52 eqeltrrd ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJ∧J↾𝑑y∈Compβ†’f-1x∩y∈J↾𝑑y
54 53 expr ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑K∧yβˆˆπ’«β‹ƒJβ†’J↾𝑑y∈Compβ†’f-1x∩y∈J↾𝑑y
55 54 ralrimiva ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑Kβ†’βˆ€yβˆˆπ’«β‹ƒJJ↾𝑑y∈Compβ†’f-1x∩y∈J↾𝑑y
56 kgentop ⊒J∈ranβ‘π‘˜Genβ†’J∈Top
57 56 ad3antrrr ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑Kβ†’J∈Top
58 toptopon2 ⊒J∈Top↔J∈TopOn⁑⋃J
59 57 58 sylib ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑Kβ†’J∈TopOn⁑⋃J
60 elkgen ⊒J∈TopOn⁑⋃Jβ†’f-1xβˆˆπ‘˜Gen⁑J↔f-1xβŠ†β‹ƒJβˆ§βˆ€yβˆˆπ’«β‹ƒJJ↾𝑑y∈Compβ†’f-1x∩y∈J↾𝑑y
61 59 60 syl ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑Kβ†’f-1xβˆˆπ‘˜Gen⁑J↔f-1xβŠ†β‹ƒJβˆ§βˆ€yβˆˆπ’«β‹ƒJJ↾𝑑y∈Compβ†’f-1x∩y∈J↾𝑑y
62 8 55 61 mpbir2and ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑Kβ†’f-1xβˆˆπ‘˜Gen⁑J
63 kgenidm ⊒J∈ranβ‘π‘˜Genβ†’π‘˜Gen⁑J=J
64 63 ad3antrrr ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑Kβ†’π‘˜Gen⁑J=J
65 62 64 eleqtrd ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnK∧xβˆˆπ‘˜Gen⁑Kβ†’f-1x∈J
66 65 ralrimiva ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnKβ†’βˆ€xβˆˆπ‘˜Gen⁑Kf-1x∈J
67 56 58 sylib ⊒J∈ranβ‘π‘˜Genβ†’J∈TopOn⁑⋃J
68 kgentopon ⊒K∈TopOn⁑⋃Kβ†’π‘˜Gen⁑K∈TopOn⁑⋃K
69 34 68 sylbi ⊒K∈Topβ†’π‘˜Gen⁑K∈TopOn⁑⋃K
70 iscn ⊒J∈TopOn⁑⋃Jβˆ§π‘˜Gen⁑K∈TopOn⁑⋃Kβ†’f∈JCnπ‘˜Gen⁑K↔f:⋃JβŸΆβ‹ƒKβˆ§βˆ€xβˆˆπ‘˜Gen⁑Kf-1x∈J
71 67 69 70 syl2an ⊒J∈ranβ‘π‘˜Gen∧K∈Topβ†’f∈JCnπ‘˜Gen⁑K↔f:⋃JβŸΆβ‹ƒKβˆ§βˆ€xβˆˆπ‘˜Gen⁑Kf-1x∈J
72 71 adantr ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnKβ†’f∈JCnπ‘˜Gen⁑K↔f:⋃JβŸΆβ‹ƒKβˆ§βˆ€xβˆˆπ‘˜Gen⁑Kf-1x∈J
73 4 66 72 mpbir2and ⊒J∈ranβ‘π‘˜Gen∧K∈Top∧f∈JCnKβ†’f∈JCnπ‘˜Gen⁑K
74 73 ex ⊒J∈ranβ‘π‘˜Gen∧K∈Topβ†’f∈JCnKβ†’f∈JCnπ‘˜Gen⁑K
75 74 ssrdv ⊒J∈ranβ‘π‘˜Gen∧K∈Topβ†’JCnKβŠ†JCnπ‘˜Gen⁑K
76 69 adantl ⊒J∈ranβ‘π‘˜Gen∧K∈Topβ†’π‘˜Gen⁑K∈TopOn⁑⋃K
77 toponcom ⊒K∈Topβˆ§π‘˜Gen⁑K∈TopOn⁑⋃Kβ†’K∈TopOnβ‘β‹ƒπ‘˜Gen⁑K
78 32 76 77 syl2anc ⊒J∈ranβ‘π‘˜Gen∧K∈Topβ†’K∈TopOnβ‘β‹ƒπ‘˜Gen⁑K
79 kgenss ⊒K∈Topβ†’KβŠ†π‘˜Gen⁑K
80 79 adantl ⊒J∈ranβ‘π‘˜Gen∧K∈Topβ†’KβŠ†π‘˜Gen⁑K
81 eqid βŠ’β‹ƒπ‘˜Gen⁑K=β‹ƒπ‘˜Gen⁑K
82 81 cnss2 ⊒K∈TopOnβ‘β‹ƒπ‘˜Gen⁑K∧KβŠ†π‘˜Gen⁑Kβ†’JCnπ‘˜Gen⁑KβŠ†JCnK
83 78 80 82 syl2anc ⊒J∈ranβ‘π‘˜Gen∧K∈Topβ†’JCnπ‘˜Gen⁑KβŠ†JCnK
84 75 83 eqssd ⊒J∈ranβ‘π‘˜Gen∧K∈Topβ†’JCnK=JCnπ‘˜Gen⁑K